
1

Best Practices
for Navigating the
Cultural Shift to
Service Ownership

2

Digital Transformation: To the Cloud and Beyond . 3

The Case for Service Ownership a.k.a. “You Build It, You Own It” 4
- What Is Service Ownership?
- 3 Key Benefits of Developers Owning Their Own Code
- How Service Ownership Streamlines the Incident Response Lifecycle

Navigating the Cultural Shift . 6
- Convincing the Broader Organization

Getting Started: 9 Best Practices for Activating Service Ownership 7

Table of Contents

3

Today, technical leaders across industries are accountable for delivering high-quality,
always-on customer experiences through digital services—especially since downtime,
outages, and slowdowns can negatively impact their company’s revenue and brand.
According to IDG’s IDG’s 2022 State of the CIO, 85% of IT leaders responding to the
research are currently spending time on transformational activities..

If you’re a technical leader tasked with digital transformation, you can’t avoid the cloud.
And with hybrid and multi-cloud environments becoming increasingly common, many
organizations are faced with the challenge of dealing with more complexity in their digital
operations infrastructure. A side effect of this is teams becoming decentralized into lines
of business, each with their own toolchains and workflows, which can lead to difficulty in
visibility and collaboration.

As systems and teams get more complex, there is no way to efficiently manage everything
in a purely centralized fashion. This can be especially painful when it comes to incident
response because when incidents happen, siloed systems and teams operating in
traditional models can create a domino effect that can negatively impact the customer
experience and put your business at risk.

Digital Transformation:
To the Cloud and
Beyond

https://f.hubspotusercontent40.net/hubfs/1624046/IDGEXSumm2022_Final_updated%20Feb%202022.pdf

4

With the increased reliance on digital services across all aspects of life today, there’s more
at stake when things go wrong. And things will go wrong—service failure is an inevitable
part of operating with technology and systems. But how your company responds when
that happens makes all the difference when it comes to the customer experience and,
ultimately, your revenue.

In order to streamline the incident response process, you need several things:

Along with methodologies like agile and DevOps, service ownership has been
a key opportunity for technical organizations that need to adapt to new cloud and
hybrid environments.

What Is Service Ownership?

Service ownership is an operating model where the people closest to the technology from
a design and implementation perspective are responsible for it for the entire
product development lifecycle. “You code it, you own it” is a popular phrase associated
with the methodology.

Service ownership, in its simplest form, empowers engineers to be responsible for their
code in production, which leads to higher-quality software. Realigning teams to this model
gives engineers more control over their work, makes them accountable for the quality of
their code, and results in faster, more orchestrated responses to incidents and downtime.

The Case for Full-
Service Ownership,
a.k.a. “You Build It,
You Own It”

Visibility into the incident
to properly acknowledge
and triage.

Focused orchestration
to make the incident
response as swift as
possible so the impact
is contained.

Intelligent routing and
context, so the right teams
are mobilized with the
right information.

What is a service?

A service is a discrete piece of functionality that provides value and is wholly
owned by a team.

5

3 Key Benefits of Developers Owning Their Own Code

1. Developers who own their code have a greater impact on the end-user experience.
Service ownership gives developers a tighter connection with the purpose and impact that
their work is making for the business and for the end customers. They get more autonomy
and responsibility without feeling like they’re being restricted, which in turn allows them to
focus on building great products.

2. Developers who own their code are more accountable for it in production.
Owning code end-to-end from development, through testing, and into production means
that when your code breaks, you’re also responsible for fixing it. There is a quality control
loop built in where there’s a personal incentive to make sure it works—after all, they don’t
want to be woken up at 3 a.m. when their code fails. Mapping developers to services via
service ownership keeps continuity that can outlast reorgs or turnover and backfills—it will
always be clear who is responsible for what.

3. Developers who own their code can help drive down MTTR (mean time to resolution).
A key feature of service ownership often involves putting teams on call for the applications
and services they own, making developers first in line to be called when things go wrong
because they are best suited for fixing it. This is important because faster resolution isn’t
only good for minimizing impact to the customer and the business, it is also beneficial for
the technical teams themselves: When it’s clear who owns the code, fewer staff need to be
brought in to troubleshoot an issue. Those 300-person conference calls trying to trouble-
shoot who touched it last can be a thing of the past.

How Service Ownership Streamlines the Incident
Response Lifecycle

Service ownership helps streamline the incident response lifecycle by:

• Empowering engineers to own their services in production, which reduces the number of
handoffs and can significantly reduce MTTR when incidents occur.

• Placing subject matter experts with direct knowledge of the systems they support in the
role of first responders, which helps decrease the inevitable chaos and panic that arise
from uncertainty.

6

To successfully adopt service ownership for your organization, it’s not enough for engineers
to simply take responsibility for their code—a cultural shift is also required.

It helps to start from a position of compassion, shared responsibility, and trust. Individuals
need to be empowered to make decisions in an efficient manner and should not fear being
blamed for an incident. For example, some may fear that if it’s their code or a change made
by them that caused downtime, they may be blamed for causing an incident.

Organization-wide buy-in is also required to make a cultural shift to blamelessness in order
for service ownership to be truly embraced. Such a cultural change takes time and requires
buy-in from the top down, so starting small and setting the example upfront that incidents
are not causes for blame can help you set your team up for success.

A Note for Gaining Buy-In From the Greater Organization

For companies transitioning to service ownership from a traditional operating model, there
will likely be resistance from a central operations team.

As with all change, there’s a fear of what the tradeoff is. Here are few topics that we’ve seen
early adopters of service ownership navigate with their internal partners.

Visibility and Control
Visibility and Control. When presented with the idea of service ownership, IT partners
may have a knee-jerk reaction and think, “If I do something differently, I will suddenly lose
visibility into X.” Contrary to what they may think, when moving things to the cloud, central
IT organizations often find that they end up with more visibility and pipeline control than
the traditional model may have provided them. It also helps them keep up with the pace of
change and offers some solutions for consolidating or reducing noise.

Productivity
How much time do your teams spend on manual tasks? How often do they have to dig
through old or outdated documentation and figure out how to address incidents in an
ad-hoc manner? Having tools that unify processes instead of passing playbooks back and
forth will help streamline and reduce manual work, giving your teams time back to focus on
innovation and driving the business forward.

Security and Governance
Every company is going to approach this a little differently, but it’s possible to find a middle
ground to build processes to address valid points and considerations. It’s important to posi-
tion this from the very start that these efforts require shared responsibility and trust. Change
is always hard, but attitudes set the table for how to move the business forward.

Navigating a
Cultural Shift

7

Agile methodologies can be essential when implementing a culture of service
ownership. Work is often unpredictable and agile methodologies can help
teams stay the course toward long-term goals, even when the unexpected
occurs.

Agile-type workflows can help identify things that are going well and potential
blockers. Adopting agile-type workflows is typically a part of most digital
transformation initiatives.

Organizational transformation takes both significant effort and executive
support. Gaining executive support begins with demonstrating value, and
a useful method for demonstrating that value with mitigated risk is to start
small. Choose a non-critical production system and begin the process of
defining your service. Next, measure a baseline of performance for your current
production system.

Additionally, allow your team the necessary time to learn the stepping stones
they will use to master the mechanics of service ownership. One of the more
immediate gains you should see is faster incident acknowledgement and,
therefore, resolution.

Getting Started:
9 Best Practices
for Activating
Service Ownership

1. Stay agile

2. Start small

8

Greenfield projects eschew the past and start free from inherited technical
and organizational debt. It’s simpler to start fresh and design a world free from
legacy restrictions. However, if your goal is to prove organizational value, it may
better serve your long-term transformational initiative to select an achievable
brownfield project.

Here’s a simple test: Are you likely to hear the phrase, “That’s never going to
work here,” in your organization if you propose something new? If so, consider
selecting a more achievable brownfield project to start with.

Mistakes will be made. Digital transformation and service ownership are about
learning new models and adapting them to the needs of your organization.
Individuals need to be empowered to make decisions and experiment, while not
fearing blame or retribution when making the wrong choice.

A culture of psychological safety is one of the leading indicators that predict
high-performance among software delivery teams. For in-depth tips on creating a
culture of blamelessness, check out our Postmortem Ops Guide.

As with any new skill, practicing in low-risk settings builds the confidence needed
when the real thing happens. For teams that are new to owning production
services, simulating incidents is a great way for them to become accustomed to
managing incidents when they occur. Chaos engineering can work wonders to
help with building more reliable workflows.

In the early days of Amazon, Jeff Bezos set a rule: Teams shouldn’t be larger than
what two pizzas can feed, no matter how large a company gets. Setting this rule
of small teams meant individuals spent less time providing status updates to each
other and more time actually getting stuff done. It also allowed team members
more time to focus on continuous improvement

3. Set yourself up for success

4. Don’t play the blame game

5. Practice, practice, practice

6. Right-size your teams

https://postmortems.pagerduty.com/

9

Services should be set up granularly enough to help identify the source of
problems. If two microservices always behave as one, and fixing a problem
on one means fixing it also on another, it might make sense to combine them.
Document dependencies to help define roles and responsibilities so incidents
don’t fall through the cracks.

If you have a monolith, consider how you will address on-call responsibilities
for it. Monoliths tend to be the cause of a lot of incidents, both actionable and
non-actionable. If one team owns the monolith, they usually don’t own any other
services unless the on-call load for the monolith is low.

If multiple teams share responsibility for the monolith, consider gradually identifying
different sources of functionality and routing those alerts to teams that have the
right context. Each source of functionality can be represented as a different service
for your documentation, enumerating runbooks and wikis, along with your on-call
ownership in platforms like PagerDuty.

Service documentation is a shared responsibility among every engineer
contributing to the code base. You wrote it, you document it.

Aside from writing code, there are key functional concerns for owning a service
that extend well beyond checking code into a shared repo with a sparse README
that maybe explains what the repo contains. Documentation provided should
explain what the code does, in addition to a contract that other services can
understand if they need to interact with the service.

7. Be clear when defining services

8. Have a plan for your monolith(s)

9. Don’t forget to document
for the masses

10

Service Ownership Is a Shared Responsibility

At the end of the day, service ownership is a shared responsibility across cross-functional
parts of your organization. Engineers who wrote code aren’t the only people accountable
for ownership of a service. It truly takes a village.

For even more information around service ownership and how to implement it at your
organization, check out our Service Ownership Ops Guide.

To see how you can empower your developers to own their code, visit
www.pagerduty.com or start a 14-day free trial today.

About PagerDuty

PagerDuty, Inc. is a leader in digital operations management. In an always-on world, organizations of all sizes trust PagerDuty to
help them deliver a perfect digital experience to their customers, every time. Teams use PagerDuty to identify issues and oppor-
tunities in real time and bring together the right people to fix problems faster and prevent them in the future. Notable customers
include GE, Cisco, Genentech, Electronic Arts, Cox Automotive, Netflix, Shopify, Zoom, DoorDash, Lululemon and more.

To learn more and try PagerDuty for free, visit www.pagerduty.com.

2020 PagerDuty® // All Rights Reserved.

https://ownership.pagerduty.com/
https://www.pagerduty.com/
https://www.pagerduty.com/sign-up/

