= RUNDECK

SELF-SERVICE OPERATIONS

The Guide to Fewer Interruptions, Less
Waiting, and Getting More Done

ELIMINATING INTERUPTIONS i

SELF-SERVICE
ACTIVATED

-« IR

OPERATING

Do you want to eliminate the interruptions, waiting, and
frustration that undermines Operations work?

This guide is for you. Let's dive into the why, what, and how of
Self-Service Operations.

Self-Service Operations

Table of Contents

Introduction
The Operations Squeeze
Self Service Operations

Part 1: Why Self-Service Operations
Interruptions Keep Getting in the Way

Too Much Time Is Spent Waiting

You Need to Do More and Do More of It

Silos and Request Queues Are Highly Destructive
Design Patterns for Solving Silo Problems

Part 2: What is Self-Service Operations?
Change how you think about automated procedures
ROI of Self-Service Operations

Part 3: How to Build Your Self-Service Operations Capability
Step #1: Establish your Self-Service Operations Platform

Step #2: Collaborate to define operating procedures

Step #3: Integrate with other Enterprise Management tools

Step #4:. Make your auditors happy

Favor continuous improvement over a “big bang”

Spot and Fix Anti-Patterns for Quick Wins

How Rundeck can Help

Conclusion
About the Authors

Self-Service Operations ii

Introduction

The Operations Squeeze

DevOps and Digital Transformations are driving an unprecedented
increase in the pace and volume of daily change. While this might
be great news to Development and Product teams, their
counterparts in Operations are alarmed at the problems and
challenges that comes with this increase in pace and volume of
work.

HO

"\/

Operations organizations are finding themselves squeezed
between two unrelenting forces. On one side there are the
business-driven demands of DevOps and Digital Transformation

Self-Service Operations 1

(“Go faster! Open things up!). On the other side there are the
business-driven demands to maximize security and stability ("Don't
be the next hack! Don't be the next outage! Lock things down!").
And there, in the middle, is an already over-burdened Operations
organization doing their best to avoid being squeezed beyond the
breaking point.

Operations is reaching an inflection point. To deliver what the
business demands, Operations has been challenged to find a way
to provide unprecedented levels of organizational responsiveness
and throughput — all while “locking things down” to sufficiently
meet today’s risk profiles.

A lot is riding on how Operations responds to this challenge. A
failure here is not just a localized IT failure. A failure will undermine
a business’s ability to operate. Failing to solve this IT challenge will
turn into a competitive disadvantage for the business.

On the flip side, this challenge also presents a great opportunity.
Operations can take this business mandate and use it to reimagine
how both planned and unplanned work is handled. This is a
chance to improve how Operations both serves the broader
business and improves the day-to-day lives of Operations
professionals.

Self-Service Operations 2

Self-Service Operations

Self-Service Operations is a key design pattern that allows an
Operations organization to move faster, be more flexible, and lock
things down. Self-Service Operations is also critical technique for
breaking down the organizational barriers that prevent enterprises
from achieving DevOps and Digital transformations

On the surface, Self-Service Operations is a straightforward
concept — turn your operations tasks into automated services that
can be consumed on-demand (via GUI, command line, or API) by
anyone who needs those operations task performed.

Self-Service Operations

However, when you look deeper, you'll see that a lot goes into
making this straightforward vision a reality. This book introduces
the why, the what, and the how of Self-Service Operations.

Self-Service Operations

Part 1: Why Self-Service
Operations?

Interruptions Keep Getting in the Way

Operations is one of the few areas in all of business where both
planned and unplanned work co-exists by design.

On the one hand, there is engineering and project work to be
done — like delivering new platforms, spinning up new
environments, working on scaling and performance, and analyzing
new technologies.

On the other hand, there are the constant interruptions —
responding to incidents, scaling events, security events, customer
requests, and inquiries from colleagues.

Most of the interruptions coming into Operations are time
sensitive. Obviously, outages are urgent, and everyone depends
on you to respond immediately. However, even the requests that
someone should have seen coming — like business and customer
requests or a colleague who ran into an operational issue
delivering a project — all get marked “urgent” and presented to
you at the last minute, interrupting your work.

Self-Service Operations

Making matters worse, you often can’t give the engineering work
to one team, and the interruptions to another team. Knowledge,
skills, and capability are distributed unevenly throughout your
organization. The various bits of planned and unplanned work
require unpredictable expertise in different domains and familiarity
with previous work. This is how you end up with everyone juggling
all types of work at one point or another.

From an organizational perspective, these interruptions are
expensive. People’s productivity ends up suffering from death by a
thousand cuts. From a manager's perspective, this leads to the
dreaded, but all too common, “everyone is busy, but nothing is
getting done” syndrome.

Self-Service Operations 6

From an individual perspective, interruptions are a source of
frustration and stress. Interrupts are frustrating because they
prevent you from getting to the important work you know you
need to do. The feeling that you are behind or that your control
over your time is slipping away is stressful, demoralizing, and can
lead to burnout.

Self-Service Operations helps you avoid interruptions. Easily setup
self-service interfaces for any number of operational tasks and cut
out all of the repetitive tasks that chew up people’s time.

Too Much Time Is Spent Waiting

Much like interruptions undermine productivity in Operations,
waiting is also a significant source of waste.

You lose time waiting for someone to do something for you. Others
lose time waiting for you to do something for them. Waiting is all
too often a repetitive fact of life in Operations.

Self-Service Operations 7

If you simply add up the time spent directly waiting, you can get to
a big number. However, the cost to the organization is even more
substantial if you take into account the compounding nature of
delays in a complex system like a technology organization in an
enterprise.

Of course, we can’t forget what the the Lean, Agile, and DevOps
movements taught us about delays. Delays slow down feedback,
and slow feedback leads to lower quality. Delays also increase the
likelihood that the context of the work has changed, which can
cause further issues, like doing the wrong thing. Delays also have
a business cost (e.g., slower time to market). Small delays can
compound into big problems.

Self-Service Operations helps you eliminate waiting and delays.
Easily setup self-service interfaces for any nhumber of repetitive
operational tasks and eliminate the amount of time that people
spend waiting for you or you spend waiting for others.

You Need to Do More and Do More of It

Operations has always carried the mandate of meeting the
business needs through designing, running, and fixing complex
systems. However, what that operations work looks like and what
those systems are comprised of has changed over time.

In the past few decades, we’ve seen the focus of typical enterprise
operations organizations steadily expand from networking, to
server platforms, to service management, to API integration. If we

Self-Service Operations 8

look at what happens today, operations encompasses the full
stack of a very complex, software-defined, APl-enabled system
running on infrastructure they may or may not own.

The breath and nature of Ops work has evolved

Part of this expansion can be attributed to the dramatic evolution
of the underlying enterprise compute technologies. From open
platforms to virtual machines to cloud to containers to “Cloud
Native” — there has been one major shift after another.

Of course, the systems built under each new technology paradigm
never fully replace the systems built under the old paradigms. It's
not uncommon for an enterprise to have an accumulation of
systems built over 10-15 years and have no budget, risk appetite,
or even viable way to replace them all.

With each shift, who bares the brunt of the responsibility for
making sure the old and the new hang together? Operations, of
course. With each new advance, Operations juggles more

Self-Service Operations

complexity and more layers of legacy technologies than ever
before.

One belief that has remained consistent throughout most of this
evolution is the idea that operations work may only be executed
by a distinct and separate Operations team. For decades it was
almost considered heresy to suggest dismantling the strong,
wall-like division of roles and responsibilities between
Development teams and Operations teams.

Everyone else

Traditional view that Ops can operations tasks -
| -

Today, the DevOps and Cloud Native movements are strongly
challenging the old “Ops in a silo” orthodoxy. These movements
have been taking an end-to-end look at improving the entire IT

Self-Service Operations

10

lifecycle. In doing so, they are challenging many old assumptions.

DevOps and Cloud Native share a ruthless focus on improving
time-to-market while simultaneously improving quality and
lowering costs. These practitioner-led movements have repeatedly
shown that the strongly-siloed traditional way of operating is why
so much of IT was delivered late, cost too much, and didn’t deliver
on its promises to the business.

To understand why Self-Service Operations is so important we
need understand why the old way of working in silos and passing
work through resulting request queues can be so destructive.

Silos and Request Queues Are Highly Destructive

The term “silo” is a bit of DevOps jargon used to describe a
specific condition that occurs naturally anywhere a significant
number of people gather to do work.

Following human nature, organizations tend to divide up their
work and their people by functional specialization. As these
divisions occur, human nature further encourages the people
within these divisions to focus inward and optimize their work for
their specialization. This is where silos start to form and the
problems begin.

Self-Service Operations 1

A team is said to be “working in a silo” when that team is working
in a different context from other teams, their work comes from a
different source (i.e. a different backlog), and they are working
under different priorities or incentives. While specialization and
focus are inherently a good thing for skills development, we have
to be vigilant to avoid the unintended formation of organizational
silos. It should be noted that silos are not meant to be in
indictment of having organizational structure or division. While
structure can contribute to the formation of silos, it is really how
people work that makes it a silo. Silos may tend to form along
team boundaries, but teams do not necessarily have to turn into
silos.

Self-Service Operations

One of the first signs of silo formation is difficult or eror-prone. The
most common culprits of these handoff problems are:

e Information mismatches — The parties on either side of the
handoff are working with different information or are
processing the information from different points of view,
leading to an increase in errors and rework (i.e. repeat work
due to previous errors).

¢ Process mismatches — The parties on either side of the
handoff are following either different processes or processes
that are nominally the same but take a different approach
and produce results not expected by the other party. Timing
and cadence mismatches between parts of a process that
take place in different silos also lead to an increase in errors
and rework.

* Tooling mismatches — An increase in errors and rework is
seen when different parties on either side of silo boundaries
are using different tooling or tooling that isn’t setup to
connect seamlessly. When the work needs to be translated
on the fly by a person moving information and artifacts by
hand from one tool to another, delay and variance are bound
to be introduced into the process.

Self-Service Operations 13

ornaron [
Sorecers [N ...,

Tooling - o Tooling
Information. process, and tooling mismatches cause handoff problems

Another sign of silo formation is that request queues appear at the
boundaries of the silos and grow increasingly longer. The stronger
the silo effects, the the longer the requests queues become. As
the silo effects take hold, those fulfilling the requests end up
working increasingly disconnected from the requestors and, due
to the issues listed above, that leads to additional errors and
rework.

On the surface, request queues seem like an orderly and efficient
way to manage work at organizational divides. However, if you
look under the surface you will find that request queues are a
major source of economic waste in any business.

Why are requests queues a major source of economic waste? Let
us look at the list created by noted author and product
development expert, Donald G. Reinertsen.

Self-Service Operations 14

Queues create:

Longer Cycle Time — Queues increase cycle time as it takes
longer to reach the front of a large queue than than a small
one. Even small delays can exponentially compound within a
complex interdependent system like an enterprise IT
organization.

Increased Risk — Queues increase the time between request
and fulfillment which in turn increases likelihood of context of
the request changing. If a problem does arise, the requester
is now in a different mental position (often working on
something else) from where they were when they made the
request.

More Variability — Longer queues lead to high levels of
utilization and higher levels of utilization amplify variability.
This leads to longer wait times and a higher likelihood of
errors.

More Overhead — Queues add a management overhead for
managing the queue, reporting on status, and handling
exceptions. The longer the queue, the more these overhead
costs grow in a compounded manner.

Lower Quality — Queues lower quality by delaying feedback
to those who are upstream in the process. Delays in
feedback causes the cost of fixing problems to be much
higher (e.g. bugs are easier to fix when caught sooner) and
often means that additional problems of a similar origin have
been created before the first negative feedback arrives.

Self-Service Operations 15

¢ Less Motivation — Queues have a negative psychological
effect by undermining motivation and initiative. This is due to
queues (especially longer queues) removing the sense of
urgency and immediacy of outcomes from the requestor’s
work. If you don’t feel the impact and don’t see the outcome,
it’s human nature to grow negatively disconnected from the
work.

Longer Cycle Time

Increased Risk

Queues -
M v ol ofe
Create... ore Varibility

More Overhead

Less Motivation

Queues are major source of economic waste

Reinertsen also points out that higher the capacity utilization of a
team, the exponentially longer the request queues will be (which
directly increases all of the economic wastes previously listed).
Given that most IT operations teams operate at near full capacity,
this effect needs to be understood.

Self-Service Operations 16

20

15
Queueing Theory:

Assumes M/M/1/ « Queue
10

Request Queue Size

10 20 30 40 50 60 70 80 90 100

Percent Capacity Utilization
Adapted from Donald G. Reinertsen, The Principles of Product Development Flow: Second Generation Lean Product Development

Relationship between queue size and capacity utilization

As a team approach 100% utilization, the request queues increase
in size exponentially. As we move from 60% to 80% utilization, the
queue doubles. As we move from 80% to 90%, the queue doubles
again. As we move from 90 to 95 percent, the queue doubles
again. You can see that if a team operates in a high-utilization
environments and uses request queues to manage its work,
queuing theory dictates that it is nearly impossible to keep request
queues small and your organization will continue to suffer from the
negative economic effects of large queues.

While the waiting, bottlenecks, errors, and rework that comes with
queues can cause operations to be far more expensive than it
needs to be, it’s the cost of delay that can have a profound effect
on a company’s fortunes. For every delay introduced into a
company’s processes, there corresponding effect of reducing how

Self-Service Operations 17

quickly the business can react to the market and how quickly the

business can deliver. While the individual effect of each delay can
be almost imperceptible, in an organization full of request queues
they add up (and compound) quite quickly.

Delay has a cost and the cost can be quite expensive. As

Reinertsen says, “If you only quantify one thing, quantify the cost
of delay”.

Market: Long Lifetime Value, Peak Unaffected by Delay Market: Long Lifetime Value, Peak Diminished by Delay

COST OF DELAY

Revenue per Week
Revenue per Week

Actual Revenue

Market: Fixed Opportunity, Missed

=1~

-

’ N
’ []\
/| \

/ | COST OF DELAY \

\
\
\

[AN

Understanding your Cost of Delay is key to understanding economic impact of queues

Revenue per Week
Revenue per Week

Time

Request queues have a fundamental negative effect on the
economics of any business that depends on IT to build or maintain
business advantage. Despite this, what is the most common
method of managing work inside IT operations organizations?
Request queues in the form of ticket systems!

Self-Service Operations 18

For decades, ticket-driven request queues fulfilled by manual or
semi-manual processes have been the most dominant style of
working in enterprise IT Operations organizations. The typical
operating model was to have lots of specialist teams divided by
functional expertise and use ticket systems to govern the flow,
approval, and order of work between the different specialist teams.
It was also typical for a heavy reliance on project management
coordination to push work through this system of silos.

If you examined how any of the teams worked under this operating
model, you would likely find the definition of a silo. You would then
find most — if not all — of the negative effects of queues and add
up the cost to the business (in both increased cost of operations
and cost of delay).

Even as ticket systems have been rebranded as ITSM tools and
new features and processes for queue management have been
introduced, it still isn’t addressing the fundamental problems that
come with functional silos reinforced by ticket-driven request
queues fulfilled by manual or semi-manual processes.

Design Patterns for Solving Silo Problems

How can enterprise operations organization solve these silo
problems? Two key strategies have emerged from the DevOps
community.

The first strategy is perhaps the most obvious: get rid of as many
silos as you can.

Self-Service Operations 19

Forward thinking organizations are transforming from a traditional
“vertical” structure aligned by function to a “horizontal” structure
aligned by value stream.

Cross-Funchonal Team 1

Cross-Functional Team 2

This generally means creating cross-functional teams that can
handle as much of the lifecycle as possible without needing to
hand work off to other teams. It is very difficult for silos to form if
you don’t have handoffs or breaks in context and everyone is
working from a single backlog with common priorities.

The second strategy is the primary focus of this paper: Self-Service
Operations. Wherever silos cannot be avoided, you must apply
techniques and tooling to mitigate the negative impact of those
silos. Self-Service Operations does just that by enabling both the
definition and execution of operations activity to be delegated

Self-Service Operations 20

throughout a broader organization and across traditional

organizational boundaries. Wait time is eliminated, feedback loops

are shortened, breaks in context are avoided, tooling is aligned,
and labor capacity is improved.

N TN

TN

R, R, R,

Self-Service Operations

Ops Capabilities

Self-Service Operations

21

Part 2: What is Self-Service
Operations?

Self-Service Operations turns your operations tasks into services
that can be consumed on-demand (via GUI, command line, or API)
by anyone who needs those operations task performed. Let’s look
at how this works and how to calculate the ROI.

Change how you think about automated procedures

Self-Service Operations is built on a fundamental shift in thinking
about automated operations procedures.

Traditionally, automated procedures have been viewed as
monolithic things that are created and live within Operations (and
often within the same Operations team). In reality, an automated
procedure has three distinct parts: the definition of the automated
procedure, the ability to execute that automated procedure, and
the security or management policies governing that automated
procedure.

Self-Service Operations 22

Definition of the
automated procedure

Execution of the
automated procedure

Execute

Governance of the
Govern automated procedure

(security, oversight,compliance, etc.)

Elements of an automated procedure

Many of the beliefs around what we can and can’t do with regard
to automating operations procedures stems from this monolithic
view. If we can instead break out our thinking about automated
procedures into these three distinct parts, the possibilities for
changing an organization start to open up.

We can start to think about who should be responsible for each of
the elements:

e Define — Who creates the definition of the automated
procedure and how do they do it?

¢ Execute — Who can execute the automated procedure and
how are they provided the ability to do it?

e Govern — Who has governance over the procedure and how
do they manage security, management oversight, and
compliance?

Self-Service Operations 23

The goal is to be able to move the individual elements of each
automated procedure to the part of the organization where the
move improves the flow of work and best utilizes your labor.

For example, we can enable a scalable organization where
developers collaborate on defining operations procedures (e.g.
“This automation smartly restart this application”), the operations
group vets and improves on those procedures (e.g. “Is this safe?
Will this do what we want? Does it play nice with other systems?”)
and then the security organization can control where the
procedure can be run and who can run it (e.g., traditional
operations engineers, developers, a dedicated IT Ops support
team, etc.).

Let’s take a look at what is possible when we move the
responsibility for the different elements of an automated
operations procedure.

Baseline: Traditional Operations Silo

Execute
Traditional Ops Silo

Govern

“Consumers of Ops” b
(Dev, QA, Release, NOC, Security, etc.)

Self-Service Operations

,

24

In the traditional siloed way of working, all operations activity is
executed by a centralized operations team. All three elements are
the sole responsibility of that centralized operations team. Do you
need an operations task completed? Submit tickets and wait in
request queues. Still waiting? Try to get the ticket escalated.

History has shown us that this model causes the most
organizational pain. Operations bottlenecks and labor shortages
are common. Handoffs to teams outside of operations (and
sometimes even within operations) are long and error-prone. When
faced with today's high-velocity software lifecycles and dynamic
infrastructures, operations organizations struggle under this
model. The recent work of the DevOps community has repeatedly
advised against this way of operating.

Rigid Self-Service

Move the ability to execute and get “rigid” Self-Service

Execute @

Govern

“Consumers of Ops”)
(Dev, QA, Release, NOC, Security, etc.)

Self-Service Operations 25

High-Velocity Handoffs

Move the ability to define and enable High-Velocity Handoffs

“Consumers of Ops”)
(Dev, QA, Release, NOC, Security, etc.)

In most cases, the systems currently running in your environments
were created or assembled by a team outside of operations.
Therefore, it is a reasonable assumption that the deepest
knowledge of these systems and how to fix them reside outside of
Operations. As those teams sprint forward, Operations will always
be playing catch-up.

To help Operations get up to speed, the teams outside of
Operations often perform a knowledge handoff to Operations in
the form of a documentation dump (readme files,
"do-this-then-do-that" word documents on SharePoint servers,
ticket comments, etc.) and perhaps some "it worked in my
environment" scripts. At the handoff, Operations is expected to

Self-Service Operations 26

quickly come up to speed and build the procedures and the
automation necessary for the management of systems in the
higher pre-production environments (e.g. UAT, STAGE, etc.) and
production environments.

In addition to the error-prone nature of relying on human-to-human
knowledge transfer, these handoffs are time consuming and
resource intensive, often requiring the full attention of your most
skilled engineers. As lifecycles speed up and environments
become more dynamic and complex, these handoffs quickly
become a major source of bottlenecks and their inevitable errors
become a weak link for quality and security.

A key step in achieving a self-service style of operations is
delegating the responsibility for defining and creating automated
operations procedures to the creators of the systems and software
running in your environment. A simple example would be a
mandate that developers write and maintain all automated
operations procedures for all software that they create.

This means that the automated procedures have to be seamlessly
reusable by both the development team and the Operations team.
Automation for one component must also work seamlessly with
automation for other components. One might think that this implies
that a single automation tool would have to be used across all
teams. But, that is not actually the case.

Forcing teams to standardize on one language or automation
framework just isn't realistic given the heterogeneous nature of
modern enterprises. Teams need to be able to use the automation

Self-Service Operations 27

languages and tools that they want, while allowing for other tools,
to orchestrate procedures across those underlying frameworks
and languages. If you can achieve this, you get high-velocity
handoffs that improve the flow of work, improve quality, and
relieve Operations of significant pressure.

Self-Service Operations

Move the ability to define and enable High-Velocity Handoffs

Define |

Govern

“Consumers of Ops”)
(Dev, QA, Release, NOC, Security, etc.)

Once you combine self-service capabilities for both defining and
executing automated procedures, you have enabled Self-Service
Operations. Like any modern, on-demand "_aaS", you are putting
as much control as possible into the hands of the requesting party.
This lets the requester complete their tasks, when they need to,
and keep feedback loops as tight as possible.

Self-Service Operations 28

ecurity and management controls are significant requirements for
Self-Service Operations solution. This way of working can only
exist in an enterprise setting if Operations can maintain full
security controls, enforce compliance, and have management
oversight.

If done correctly in a low-friction manner, everybody wins.
Operations gives autonomy to teams who need operations tasks
performed while simultaneously locking down critical information
to a greater degree than is even possible today.

As an organization advances with the Self-Service Operations, it is
a logical next step to push some governance capabilities to other
teams. This is popular with organizations that have multiple lines of
business with different risk profiles. While Operations must retain
ultimate control, there are some access control and compliance
decisions that can be pushed closer to the owners of the risk
within those lines of business.

Advanced: Move some control over governance

Execute
Govern

Govern

“Consumers of Ops” b
(Dev, QA, Release, NOC, Security, etc.)

Self-Service Operations 29

ROI of Self-Service Operations

There are multiple business drivers for moving to an Self-Service
Operations model. Calculating a return on investment will always
depend on a company's unique environment, however here are
some ways to build your company specific ROI calculations:

Benefits for
teams outside
of Operations

4 4

Benefits for
Operations teams

ROI of Self-Service Operations...

1

Benefits to the
Business

ROI benefits for teams doing operations work:

e Decrease in time to respond to incidents (MTTR / Mean Time
to Repair)

Decrease in errors and rework (Fewer mistakes, greater
consistency)

Increase in total support volume the team can take on
* (Comfortably do more with same number of people)

Self-Service Operations 30

¢ Increase in operational support tasks that can be handled by
other teams (Create more capacity by enabling other teams
to do operations support tasks

ROI benefits for teams doing operations work:

e Decrease in number of escalations (Fewer interruptions, less
context switching)

Decrease in time spent waiting for completion of tasks by
Operations support teams (Safely take action rather than
wait for tasks to be done by operations support teams)

Decrease in issues due to problematic or incorrect handoffs
* (Less unplanned work)

ROI benefits for teams doing operations work:

e Decrease in total support costs (More cost-effective
organization)

Decrease in time to market (Quicker cycle-time and less
schedule slippage)

Increased visibility for audit and compliance

The benefits accrued by each constituent group (Operations and
the groups served by Operations) reinforce each other and
compound over time. The net effect is that the ROI to the business
should grow exponentially as more Self-Service Operations

Self-Service Operations 31

capabilities are rolled out to additional parts of the company. If
you are getting started and want the simplest ROl measure that
everyone can rally behind, use lead time. There are lead times all
over your organization and each one has a cost associated with it.

There are lead times for feature delivery or lead time in resolving
an incident or lead time in waiting for an environment change.
Calculate how much each of those lead times cost. When talking to
engineers you can express lead time in how long they are waiting
or how long it takes them to do repetitive tasks for others. When
talking to the business you can add up those lead times and
quantify the cost of delay. You can then make the financial
argument that you should apply the Self-Service Operations
pattern to reduce as many of those lead times as possible.

Self-Service Operations 32

Part 3: How 1o Build Your
Self-Service Operations
Capability

Now that we’ve covered the “Why” and the “What” of Self-Service
Operations, let’s look at how companies go about building their
Self-Service Operations capabilities. We’ve noticed a general
pattern that companies follow. The process can be broken down
into the following four steps.

Step #1: Establish your Self-Service Operations Platform

Self-Service Operations 33

The first step is to focus on creating a central, secure hub that
serves three primary functions:

€ Framework for defining and executing automated
operations procedures

e Point of enforcement for access control and governance
requirements

Views of relevant configuration and health information for
the environments and systems on which operations
procedures will be run

Heterogeneity is a fact of life in the enterprise. Multiple
generations of different platforms and tools will need to co-exist.
The idea that an enterprise of significant size can move exclusively
to one platform and one automation language/framework just isn’t
reality. In addition to the logistical, financial, and technical debt
barriers to completely retooling, its natural for different teams to
want to use reuse their skills and select tools that best fit their
specific needs.

Plan for this heterogeneity by focusing on the orchestration and
scheduling of those underlying platforms and supporting tooling.
Allow teams to create the component automation using the
scripting languages or tools that they want to use. The focus of the
hub created for Self-Service Operations should be to provide a
general orchestration and scheduling capability that can leverage
and standardize automation written in any language or built in any
legacy tool (as long as you can get API or CLI access to those
legacy tools).

Self-Service Operations 34

Role-based access control is a critical part of the Self-Service
Operations hub. All enterprises have the need to enforce strict
security and governance requirements. Operations needs the
capability to delegate access to other teams who don’t traditionally
participate in operations activity. The ability to grant read, write,
and execute permissions based on roles is essential.

The person executing operations procedures will generally need to
understand the context within which they are executing those
procedures. The most important parts of that context are generally
the current status and current configuration of the system on
which they are working. Current status can generally be found in
your existing monitoring and metrics tools. Current configuration
can be more difficult to determine if a live-updated CMDB doesn’t
exist. However, following more modern practices there are often
configuration templates and configuration management tools that
have this information (and newer systems may already expose this
data to inspection via API).

When people are experienced with the services and systems being
managed, it is not difficult for them to work from multiple “screens”
— looking to different places to get monitoring or configuration
data and then going to a different tool to take action. However,
when people are less experienced with a particular service or
environment (which is bound to happen as you expand
self-service), there is benefit to bringing those views together.
Meaning, a person would see, all in one place, the monitoring and
configuration context as well as the actions they can take.

Either as a prerequisite or a parallel step, work with your peers to
define a basic set of standard procedures and a shared

Self-Service Operations 35

“vocabulary” around actions that can be taken on each
environment and system. An example of this would be to say that
everything needs a basic set of actions — start, stop, status,
configure, update, reset connections, etc. The convention you
establish will provide slots that the responsible parties can fill in,
and expand upon, with their favorite scripts and tools. This creates
a consistent baseline of expectations for both those who created
the automated procedures and those who will be executing the
automated procedures.

Step #2: Collaborate to define operating procedures

Engineers get visibility Ops Support use for
and controlled self:service || remediation procedures

Operations as a Service

Inventory and Health

Source
» Code Repo

Automated Procedures
and Health Checks

Audit Logs Allow/Deny

Product Engineers
Produce automated
procedures and health
checks

One of the great advances of the DevOps movement is bringing
Software Development Lifecyle (SDLC) discipline to operations
work. Since everything above the hardware is software, why not
treat it as such and use all of the established software

Self-Service Operations 36

management best practices that we can. These include using
versioned source control, having an automated “build” process,
using a well-defined promotion process to move code from one
environment to the next (hopefully as immutable artifacts), and
regular code reviews.

After teams establish their Self-Service Operations platform, the
next step is to setup an SDLC that Development and Operations
teams can collaborate through to define standard operating
procedures. Developers will define the procedures to manage the
systems they create and Operations and Security will vet those
procedures and perform code reviews. Approved procedures can
be tested in lower environments then promoted to production
where they can be used by anyone to whom Operations and
Security has delegated access.

The primary benefit is that you can leverage the knowledge of
Development teams. They are closest to creating the system and
are most qualified to determine if it is healthy and how to operate
it. By getting them involved early, they can create and test the
automated procedures when they are easiest and cheapest to
create. This also speeds any handoffs from Development to
Operations since Operations can focus on vetting and approving
the procedures rather than creating them.

It should also be pointed out that in most enterprises, the total
number of developers will be a lot larger than the total number of
operations engineers. The only hope of relieving the capacity
squeeze on Operations is to leverage all of that labor that can be
found outside of Operations.

Self-Service Operations

Operations teams who engage developers with this SDLC-driven
approach see a rapid increase in both the usage of their
Self-Service Operations hub and the overall delivery throughput of
the organization.

Step #3: Integrate with other Enterprise Management
tools

Engineers get visibility
and controlled self-service Ops Support

visibility and audit trail
updated by support ‘ @
00

K K Customers
ﬂ Service Desk
Ops Procedures Inventory and Health

“Status” Infrastructure view
Artifact and

“Firewall Change” nﬂ”” Service health Container
Management

Operations as a Service

“Restart” nl'lﬂ” System metrics.

= RUNDECK + Monitoring/Observability

Now that the Self-Service Operations hub is up and running and
the SDLC around the automated procedures is in use, the next
step is to integrate with other enterprise management tools to
make your Self-Service Operations capabilities even more
intelligent.

For example, ITSM tools have a wealth of ticket and incident
information and are key regulators of operations communication

Self-Service Operations 38

and work permission. You can have your procedures update
tickets, check if tickets exist, open tickets on failure, and more.

Software artifact and container repositories will generally know
which versions are available and marked approved. Through
integration, you can have your automated procedures present
users with options based on data from these repositories.

Chat systems are central to the new ChatOps style preferred by
engineering and operations teams. Integrate with your ChatOps
engines to call your automated procedures and see output within
your ChatOps sessions.

The more integrations you can create, the more context your users
will have without leaving the Self-Service Operations hub.

Step #4: Make your auditors happy

Ops Support
visibility and audit trail
updated by support

z Customers
« Service Desk

Artifact and
Container
Management

procedures and health
checks

co nc
Who created the procedure Who created the policy

Self-Service Operations 39

While the idea opening up operations activity to a broader team
may be initially concerning to traditional auditors, you can prove
that your Self-Service Operations platform actually improves your
compliance posture. With the platform in place you will have audit
evidence automatically generated from start to finish. You can
prove: who created the procedure, who reviewed it, what the
approval trial was before it was run, who ran it, when it ran, where
it ran, and exactly what ran. When you combine that with a
platform that logs all events and an audit trail for access control
policies -- your Self-Service Operations platform should be your
auditor’s best friend.

Favor continuous improvement over a “big bang”

Self-Service Operations 40

A common trait that we see among high-performing companies is
that they rollout their Self-Service Operations capabilities using a
continuous improvement approach rather than a “big-bang”
approach.

These high-performers will start with a limited set of procedures in
a particular slice of their business before expanding. During the
subsequent expansion, they add more procedures, expand to
other parts of the business, and improve their capabilities along
the way. They do this on a rolling basis to ensure that they catch
any design flaws or user concerns as quickly as possible. The
result is that they deliver a long series of quick wins that make
everyone happy.

The continuous improvement mindset is also important given the
platform nature of Self-Service Operations. A healthy platform is
one that all parties can adapt quickly to their need. Recognizing
that change is a constant in Operations, we are reminded to make
tooling and design choices that favor ease of use, low learning
curves, and a rapid delivery lifecycle.

Spot and Fix Anti-Patterns for Quick Wins

One of easiest ways to get started is to look for repeated patterns
that lead to interruptions, waiting, or other bad interations between
teams. Use self-service operations as the countermeasure for
eliminating these “anti-patterns”.

Every organization is different, but her are some common
anti-paterns and countermeasures to get you started.

Self-Service Operations 41

Anti-Pattern: ¢l could fix it. But | can’t access it.”

Who hasn’t had disjointed or disconnected access policies get in
their way? Whether responding to an incident or delivering project
work, you’ll find yourself blocked from the environments or
infrastructure where you need to take action — even though you
have the knowledge and experience to do what needs to be done.

This lack of access could be for any number of valid reasons.
Sometimes, security or compliance concerns get in the way. Other
times, the lack of access may be a byproduct of a siloed
organization or political turf concerns.

In any case, the problem is the same: those who have the full
context of the issue that needs to be solved (and usually urgently),
aren’t able to take action. These engineers end up opening tickets
or trying to find, by IM or phone, a colleague who can help them.
This way of working adds additional task-switching, delays, and
interruptions.

Self-Service Operations 42

After
I've got this!

Self-
|§ # Service »
(]

[=

Instead, we can use a Self-Service Operations Platform to give
engineers the access they need to get their job done quickly,
effectively, and safely. Those who are experts can define the
operational procedures that others can safely (and securely)
execute.

Self-Service Operations

43

Start by looking for repetitive tickets, or person-to-person requests,
where the only value the person fielding the request adds is that
they have access. Create self-service jobs to replace those
requests and use the Self-Service Operations platform to provide
fine-grained access to those who need it.

Anti-Pattern: “Do it. Do it again. Then do it again.”

Repetitive requests are one of the easiest types of wastes to spot.
Whether you informally poll your colleagues or analyze your ticket
system, you can quickly identify requests that are made over and
over again.

Automating these requests provides obvious time savings.
However, when you put that automation behind a self-service
interface, the benefits grow exponentially.

For the person who formerly fielded the requests, they are spared
the interruptions and expensive context switching that comes with
repetitive requests. Interruptions don’t just eat up time.
Interruptions also prevent the person fielding the requests from
using their knowledge and experience to address other work.

For the person making the requests, self-service eliminates
waiting. Waiting is expensive as it not only delays work, but it
delays feedback. As we’ve seen in Lean, Agile, and DevOps,
slower feedback leads to lower quality and higher risk.

Self-Service Operations 44

BEFORE

“ l

Self-Service ’ a l

Self-Service ’ a l

Self-Service et a I

Start by looking for repetitive tickets. You can analyze your ticket
system to get a list of most frequent repetitive requests. From
there you can evaluate which of those requests are the most
disruptive and which are the easiest to automate.

Next, have the persons who are most familiar with fulfilling those
requests collaborate on the scripts to create an automated
response. Finally, plug those scripts into your Self-Service
Operations platform and give requesters access. If you use the
right Self-Service Operations platform, you can quickly turn the
simplest of scripts into powerful self-service.

Self-Service Operations 45

Anti-Pattern: “I’'m an expert, | don’t check the wiki.”

Change is a constant in enterprise operations. Services,
configurations, and underlying infrastructure are continually
changing. Procedures are frequently updated. How do you
effectively convey those changes so that mistakes aren’t made?

Documentation is an often suggested answer. However, written
documentation has one substantial and often overlooked
shortcoming — it is difficult to get people to read it!

How do you get people to stop and see if the procedure has
changed or the environment is not what they expected? Getting
people to stop and read is difficult enough during project work, but
becomes even less likely during emergencies.

Also working against documentation efforts is the classic “relax,
I’ve done this before” syndrome. The more times that someone
performs a task, the more they believe that they understand what
to do and expect underlying conditions and results to be the same.
The more routine and seemingly mundane the task, the more likely
it is that the person performing the task will approach it with
confidence and not feel the need to look for instructions.

Self-Service Operations 46

Service has changed. Service has changed.
Use this flag or bad Use this flag or bad
things will happen! things will happen!

. Pause monitoring first
p or we all get woken up!

Self-Service

I've done this I've done this
before. Ive got before. Ive got

this...

o o
o0
[] [
#‘—‘ .
Self-Service 30

Communicating through code and automated procedures is much
more effective. Rather than hoping someone reads the
documentation and interprets it correctly, you have the certainty
that the correct process will be executed. With Self-Service
Operations, the infrastructure is there to quickly enable subject
matter experts to define and update automated procedures as the
need arises.

Self-Service Operations 47

Now when it is 3 am, and you roll out of your bed to respond to
that alert, you won’t be asking yourself “Are these still the correct
commands? Am | passing the right options to these scripts? Has
anything changed?”

Anti-Pattern: “Siloed and disconnected knowledge”

Most operations work requires knowledge that spans multiple
functional specialties — application, database, operating system,
networking, storage, and so on. However, the larger the
organization, the more likely it is that much of that knowledge
resides with various functional specialists.

These specialists know, for their area of responsibility, the
particulars of the current state and the correct procedures to
manipulate that state. Distributing that knowledge is a significant
challenge. The “everyone knows everything” strategy only works
in the very smallest of organizations (and even then, its efficacy is
suspect).

A team delivering project work or responding to an incident
requires the knowledge of how to manage the full system. Siloed
and disconnected knowledge can lead to botj mistakes and the
overuse of ticket queues (i.e., “please do this for me” requests).

Self-Service Operations

48

1 don’t know Knows how
how to do X. to do X ‘
“ »
- ! 0 _

Knows how
todoY
@

1 don’t know
how to do y.

Self-Service Operations enables an organization to connect those
who need to do a task with the procedures created and vetted by
those who are experts in executing the task. This use of
Self-Service Operations allows organizations to move quickly and
commit fewer mistakes.

This use of Self-Service Operations also allows organizations to
maximize their workforce. If more people can participate in Ops
activity, then the workload can be spread more evenly. Self-Service
Operations also helps junior team members become productive
quicker and protects the organization against knowledge loss.

How Rundeck can Help

Rundeck is ready to be the core of your Self-Service Operations
platform. From orchestration and scheduling capabilities to access

Self-Service Operations 49

control management — Rundeck checks off the boxes of the
capabilities you will need to get started.

Create workflows e Define ACL policies o Execute workflows

Web GUI API CLI

CMDB
Monitor
Metrics

Cloud

Config.
Man

Infrastucture Details
and state from

T multiple sources

Collect and Process
Output

Rundeck has been built under the motto, “Go fast. Be flexible. Lock
things down.” Let’s look more closely at how the Rundeck platform
addresses each of these ideals.

Go Fast

Current business and technology trends (e.g. Digital, DevOps) are
causing a sharp increase in pace and flexibility demanded of IT.

Self-Service Operations 50

However, the complexity found within most companies gets in the
way of these desires. Rundeck is designed to work equally as well
across the “old” and the “new”. Rundeck lets you connect users,
tools, scripts, and APIs across any generation of technology.
Whether it’s traditional siloed operations of legacy systems or fast
and decentralized operations of new Cloud Native systems,
Rundeck allows your teams work they need to work. Rundeck lets
you move faster as an organization by helping you improve the
effectiveness of your operations work and also by enabling
self-service operations wherever possible.

Be Flexible

In order to respond quickly as an organization, the ability to safely
delegate control to those closest to the need is vital. Whether the
need is to respond to a production incident or manage
environments during a delivery lifecycle, Rundeck enables
companies to be more flexible and empower as many people as
needed to do operational tasks. The more operational control that
can be delegated, the more flexible and nimble an organization
can be.

Lock things down

“Be secure! Don’t be the next data breach! Don’t be the next major
outage!” is the strongest business mandate — and one of the
greatest challenges — for today’s enterprise IT organizations. If the
mandate is to lock things down, how can you meet the other
business mandate of going faster? Rundeck approaches this
challenge from two different vectors. First, Rundeck enables Ops
to implement granular access and compliance controls. Rundeck

Self-Service Operations 51

provide a control layer across all of your operational activity.
Second, as the hub of IT operations, Rundeck greatly increases
visibility into all operations activity. All actions are logged and
create a permanent record.

Want to know more about how Rundeck helps Self-Service
Operations? Get the white paper.

Self-Service Operations

52

Conclusion

Self-Service Operations is a critical capability that needs to be
developed by any enterprise IT operations organization. The
speed, flexibility, and security controls dictated by today’s business
demands can’t be met with the old practices that Operations has
relied on for decades. Self-Service Operations allows you to
distribute and align operations activity so that you can unlock the
full potential of your people and move as fast as your business
demands. Self-Service Operations is a straightforward, yet
powerful, design pattern that should be in every IT leader's
playbook.

Ready to get started? Rundeck can give you a big headstart with
your Self-Service Operations journey.

Self-Service Operations 53

About the Authors

Self-Service Operations

Damon Edwards

Damon Edwards has spent the past 15 years working with
both the technology and business ends of IT operations.
Damon is noted for being a leader in porting cutting-edge
DevOps techniques to large enterprise organizations.
Damon is a Co-Founder and Chief Product Officer of
Rundeck, Inc., the makers of Rundeck, the popular
Self-Service Operations platform. Damon Edwards was
previously a Managing Partner at DTO Solutions, a DevOps
and IT Operations improvement consultancy. Damon is also
a frequent conference speaker and writer who focuses on
DevOps and operations improvement topics.

Alex Honor

Alex Honor has spent his 25 year career building
automation systems in order to improve how enterprises
operate. Alex is the founder of the Rundeck open source
project and CEO at Rundeck, Inc.. Previously, Alex was a
highly sought after consultant designing automation
systems for companies such as Zynga, Dunn & Bradstreet,
LinkedIn, Intuit, Adobe, and WebEx. Alex was the head of
architecture and system engineering at E*TRADE and an
engineer at NASA Ames.

54

