
9 Steps to
Owning
Your Code
You code it? You own it.

A Developer’s Guide to Managing Your Code
In this guide, we’ll share strategies around successfully operating services, making

on-call as stress-free as possible, and resolving and preventing issues efficiently.

These best practices will help prepare you to excel in the new software-defined,

developer-driven world order.

Contents
OWN YOUR CODE ..3

HOW THE DEVELOPER’S ROLE IS CHANGING ..6

9 STEPS TO SUCCESSFULLY OWNING YOUR CODE7

01. Understand your services and your customers’ experiences...........................7

02. Find out about problems before your customers notice.7

03. Ensure you are only woken up for customer-impacting issues. 8

04. Assess the impact as quickly as possible. ... 8

05. Recruit the right people quickly. .. 9

06. Prevent recurring issues.. 9

07. Work your way. ..10

08. Build more resilient services. ..10

09. Don’t waste your time. Automate. ..10

Own Your Code
As technology increasingly shapes business objectives, the role of the software developer is also rapidly changing.

Digital natives are disrupting every industry vertical and businesses are expected to innovate, respond, and be available

to their customers 24x7. To meet these demands, developers — the architects of customer experiences — are being

pushed towards owning their own code. Developers know their code and can fix it faster than anyone else and are able

to ship more performant code when they are accountable for managing it. It makes sense that leading organizations are

tasking developers with both development and operational responsibilities as the best way to maximize speed, agility, and

application performance and quality.

Managing your code is something to be excited about. Establishing this accountability empowers you with the information and

control to ensure the services you build are production-ready and high-performing. It ensures you are doing high value work, as

you have direct line of sight into how your product or service is actually performing and impacting your customers’ day-to-day.

And as the customer experience is in your hands, you drive the success of your organization, as well as your own destiny.

This all sounds great, but what exactly does this mean for you?

It means that on-call and first-level response is no longer just the responsibility of a centralized NOC or an individual operations

team on the other side of a wall. Rather, being on-call will inevitably be a fundamental expectation of you as a developer (if it

isn’t already), regardless of your organization’s size or operational framework. It is now best practice for those who build services

to also be accountable for the success of those services in production. This, of course, is in addition to existing, daily software

development responsibilities.

Clearly, this introduces significant challenges and the notion of being on-call can be anxiety-inducing on both professional and

personal levels. From talking to thousands of developers, we’ve found that these are some of the things that are top of mind:

HOW DO I FULLY
UNDERSTAND
EVERYTHING

THAT IMPACTS
MY SERVICE

AND MY
CUSTOMERS’

EXPERIENCES?

WHEN I NEED HELP,

HOW DO I PULL IN THE

RIGHT PEOPLE AND GET

THEM UP TO SPEED AS

QUICKLY AS POSSIBLE?

HOW DO I ENSURE I DON’T WASTE MY TIME
DOING AUTOMATABLE THINGS?

HOW DO I
ENSURE I’M
ONLY WOKEN
UP FOR
CUSTOMER-
IMPACTING
ISSUES?

HOW CAN I
CONSTANTLY LEARN
TO BOTH IMPROVE
RESPONSE AS WELL
AS BUILD A MORE
RESILIENT SERVICE?

HOW DO I
MAKE SURE
THIS ISSUE

DOESN’T
HAPPEN

AGAIN?

HOW DO I ASSESS THE
IMPACT AS QUICKLY AS
POSSIBLE?

HOW DO I FIND OUT ABOUT MY PROBLEMS
BEFORE MY CUSTOMERS NOTICE?

CAN I WORK
MY WAY AND WITH
THE TOOLS I LIKE?

No one wants more unplanned work, or to get paged at 3 a.m.

about an issue that could take anywhere from a few minutes

to a few hours to solve. Also complicating the equation is the

fact that identifying the root cause of an issue is increasingly

unpredictable. With continuous integration and continuous

delivery, as well as the rise of microservices, developers

today are dealing with more infrastructure complexity

and faster release velocities than ever before. Technology

stacks are becoming so complicated that many teams are

outsourcing the provisioning of infrastructure components

to keep up with demands for speed and scale. Increased

infrastructure complexity results in more things to monitor

as well as more unknowns. Moreover, siloed monitoring data

stems from tools that don’t talk, creating an unprecedented

volume of alert storms and responder noise. In this context,

it may seem nearly impossible to expect anyone to manage

and troubleshoot unplanned issues across complex systems

processing hundreds, thousands, or even millions of

transactions every hour.

The good news, however, is that you are not alone. Developers

at thousands of organizations have already managed this

expectation for great results: they are able to minimize

performance issues, and improve both operational efficiency

and customer satisfaction. Ultimately, the organizations

that can deliver the best results to customers are those

that turn on-call responsibilities into a key area of strength

— organizations in which developers are empowered and

personally invested in the entire lifecycle and the success of

the services that they build.

As a developer, you code it, you build it, you test it, you deploy it,

you manage it. Above all, you own it. The customer experience

is in your hands. This is an awesome responsibility, and the

best developers embrace it and thrive. And by putting the right

processes in place, you can spend more time innovating and

doing the things you love, instead of on manual tasks related

to fixing production issues. You will even be able to ship higher

quality code and spend less time on-call. All of these factors

lead to a better work-life balance.

How the Developer’s
Role Is Changing
To understand how the role of the developer is changing, let’s first take a look at the stages of the typical software

development lifecycle.

Typically, after the last “deploy” stage, the development team might throw the code over the proverbial wall to the operations

team, to manage it and fix issues once it’s out in the wild. Day-to-day performance monitoring, issue detection, maintenance

and debugging can sometimes be a shared responsibility between development, operations, or the NOC. Regardless, it’s

important to remember that for developers, the software development lifecycle shouldn’t just end once their code has been

deployed. The best developers don’t just turn a blind eye — they take responsibility for and care about continuously improving

the end customer experience.

The additional column in green summarizes responsibilities that are crucial to a developer’s role. This updated graph reflects

all the hats developers must wear across the software development lifecycle — from coding all the way to owning.

TYPICAL DEVELOPMENT LIFECYCLE

• Unit test
• Analysis
• Package artifacts

• Test automation
• Functional tests
• Preproduction environment

• Release automation
• User acceptance

CODE TEST DEPLOY

• Run production environment
• Be on-call
• Detect and fix issues
• Learn and improve

MANAGE

OWN YOUR CODE LIFECYCLE

• Unit test
• Analysis
• Package artifacts

• Test automation
• Functional tests
• Preproduction environment

• Release automation
• User acceptance

CODE TEST DEPLOY

9 Steps to Successfully
Owning Your Code
Now that we’ve established the responsibilities of a developer,

let’s address how to make them actionable. At PagerDuty, we’ve

spent almost a decade engaging with hundreds of thousands

of developers from organizations that represent every stage in

the operational maturity continuum, and we’ve distilled their

experiences into 9 key steps.

Understand your services
and your customers’
experiences.
Centralize all data sources: Your service is impacted by many

factors — your external or internal cloud hosting environment,

the network environment and other infrastructure, and

services outside your control. There are many moving pieces

in the stack that have the potential to impact the performance

of your service. If you’re able to see clusters of events across

all relevant sources that indicate an issue, it can help shape

your development decisions such as dependencies to account

for, how much memory you actually need, etc. Having a

comprehensive, live view of all data sources (application

performance monitoring data, network health, social media

feeds, etc.) is essential for building more resilient services and

preventing issues.

Find out about problems
before your customers notice.
Monitor: Establish monitoring systems to monitor usage

trends, user behavior, application performance, logs, resource

metrics (CPU, network, disk, memory), and other critical

system and infrastructure indicators. Leverage several or

redundant sources of monitoring data (both human-generated

such as tickets or phone calls, and machine-generated such

as logs or tracing) to ensure that issues are never missed.

Aggregate: Consolidate all event data in a centralized location

so you can proactively identify patterns and anomalies across

the entire infrastructure. This is especially important for

understanding the blast radius of an issue and root cause, as it

correlates data across vendors that don’t talk to each other.

Detect and prioritize: Structure events by urgency so that

they automatically take on the desired behavior and workflow.

For instance, send an email if it’s low-urgency, such as a

generic health metric. But when an event is detected that

potentially impacts customers—for example, an uptime

monitoring alert that goes off at 3 a.m. indicating your

payment service is down—you should get called, texted, and

notified to take immediate action.

Notify: Have a system in place that automates on-call staff

scheduling and escalations to the next line of defense. This

establishes accountability as well as ensures issues requiring

a response are always routed to the right person in real-time.

01

02

Ensure you are only
woken up for customer-
impacting issues.
Adjust tuning: Fine tune your alerting thresholds and

notification behavior to match the indicators that your team

cares about. For example, instead of getting notified on a

single request failure, you might choose to get notified only

if 50 requests fail in 5 minutes, as crossing that threshold

is more indicative of a real problem that needs attention as

opposed to a random blip.

Define notification urgencies and routing: Set high-urgency

issues to notify and escalate via predetermined, high-urgency

rules. For example, you can set a rule that SEV-1, customer-

impacting outages automatically ring the on-call, notify

stakeholders from customer support and marketing/PR, and

escalate more quickly to IT management and executives.

Suppress non-actionable alerts: Just as you’ve defined

notification urgencies for actionable alerts, you should also

suppress non-actionable alerts (such as warnings, self-

healing events, etc.) so you can minimize alerting noise and

focus on what matters. However, while you don’t want to get

paged, you also don’t want to throw away this data as it can be

highly valuable for identifying simmering problems and is key

to understanding the overall health of your infrastructure.

Consolidate actionable information: A single issue can often

cause degradations among several services, firing off a ton

of alerts simultaneously that are all symptoms of the same

problem. If all of these page out, this lack of aggregation

quickly creates many issues: a huge amount of responder

noise and alert fatigue, manual work in parsing through and

acting on every alert, and highly disjointed resolution and

communication streams. As such, being able to consolidate

related context into a single object is essential.

Assess the impact as quickly
as possible.
Normalize events: Normalizing inbound event data into a

common format is critical for ensuring all the engineers on

your team can quickly and correctly interpret events, as many

vendors have different schema (for example, “alias” in Zabbix

is shorthand for any configuration term, but in Nagios it is a

given name for a host). Critical information (such as source

component, location, etc.) must be translated into common

fields that everyone can understand.

Identify (potential) root cause: Identifying the root cause

can be difficult due to unknown unknowns, but leveraging

real-time visualizations that correlate the events across your

infrastructure can help. This step is critical in helping you

identify which downstream services may have been affected

by an issue.

Assess the blast radius: Identifying the affected services and

their level of importance to the business, and/or the number

and type of affected customer accounts, helps you classify

the severity and urgency of the issue at hand. Pulling in

alternate data streams such as real-time social media feeds,

support tickets, etc., also create a holistic illustration of the

extent of the outage impact.

03 04

Recruit the right
people quickly.
Real-time collaboration: When all the right context (related

alerts, metadata, monitoring iframes, graphs, the timeline

of activity, runbooks, etc.) is in a single location, getting

additional responders up to speed is significantly easier.

Automate responder and stakeholder recruitment: In the

midst of the firefight, you don’t want to be trying to manually

digging through the company directory to find, contact,

and recruit the right subject matter experts to help. During

a critical outage, every minute spent trying to kick off the

response workflow could cost the business thousands of

dollars. Create groups of the right experts beforehand that

have their correct contact details embedded.

Additionally, it’s possible that an issue only came up in

the production environment and not in the dev or test

environments, because all those environments weren’t all

as similar to each other as possible.

 Owning the services you build in production helps

significantly here. You gain a better sense of what could

go wrong in production under real workloads because you

actually feel the pain and have to fix the problem when

something breaks. Without visibility into the capacity of

the machines in the production environment during peak

workloads, if you’re simply throwing code over the wall and

it’s not performant, your code will not pass stress tests.

 Escape prevention remediation: The goal here is to ensure

issues are detected in the test environment and that they

don’t escape undetected into the production environment.

The main way to fix this long-term is by using automated

testing wherever possible in favor of manual testing.

 Production detection remediation: When an issue is not

detected properly in production, it is usually due to lack of

proper alerting or too much noise in system. This type of

issue could already be impacting customers before you

find out about its existence —it might even be reported

in by a customer. The key to preventing issues from going

undetected in production is to ensure the right alerts are

getting through getting escalated, and getting routed

appropriately so that they don’t go unnoticed again.

Prevent recurring issues.
Surface remediation information: Make remediation

information as easy to find as possible. Ideally, real-time runbook

information is pulled into incidents directly through the API.

Evaluate the likelihood of an issue resurfacing, and

prioritize long-term resolution based on its impact/severity.

 Defect remediation: Defect remediation aims to fix the

underlying issue itself. This can be done in several ways.

You can try to make the service fault-tolerant or self-

healing. This also applies to the engineering process itself

(for example, the team didn’t check the code for syntax

errors/conduct proper linting before every commit).

05

06

Work your way.
Leverage an API to customize and build workflows: With an

API, you can optimize your existing tools by creating workflows

that make the most sense for you. For example, in a continuous

deployment example, you can hook in your deployment data via

an API, embed real-time data from different sources, identify

who you want it to route to, and automate that notification

behavior. Certain actions can ideally also be automated

through the API to facilitate an improved end-to-end workflow

(such as creating and resolving incidents, merging incidents,

normalizing inbound event data, and more).

Fix issues in context: Eliminate the need to waste time

toggling in between tools, by having all events and pipe into

a single location within your tool of choice. Staying in a single

tool for real-time notifications, collaboration and knowledge

sharing minimizes context switching, and thus maximizes

speed and productivity.

Use ChatOps: Improve operational efficiency and save

time by automating many ops-related tasks with slash

commands and chatbots.

Don’t waste your time.
Automate.
Automate manual tasks: Automate repetitive tasks wherever

possible so that you don’t have to deal with them in the heat of

an incident. This removes a lot of the burden and stress so you

can focus on response. One example is:

 Automatically surface the right information: One of the

hardest parts may just be getting all the right context

together. For example, when you get paged you might

immediately start toggling through Splunk, Datadog, etc.

to try to pull up the right metrics and parse through to find

the information you actually need. This involves trying

to remember which query you need to use for Splunk, or

whether or not you’re looking at the right dashboard in

Datadog, etc. By putting steps in place to automatically

surface runbook information or embed the right real-time

monitoring iframes and metrics in your view, you can

minimize the cognitive load of those additional tasks.

07 08

Build more resilient services.
Introduce intentional failures: Injecting failure is one of the best ways to improve the resilience of your services. Failure tolerant

design is great, but you can’t plan for everything. The best way to manage the unexpected is to get really good at finding failure. This

helps the team proactively identify and remediate deficiencies that could otherwise eventually impact customers. Of course, be sure

to put the right measures in place to ensure that failovers work as expected and don’t prevent core services from operating as usual.

Learn from post-mortems: Post-mortems are a given for all high-performing teams, as they document what went wrong and what can be

learned from every incident. Capture critical pieces of context such as what happened, root cause, the level of impact (length, severity, # of

users affected, etc.), what went well, what didn’t go so well, the complete timeline of events, and action items stemming from the incident.

09

Try PagerDuty Free for 14 Days

About PagerDuty

PagerDuty is the leading digital operations management platform for businesses, that integrates with ITOps and

DevOps monitoring stacks to improve operational reliability and agility. From enriching and aggregating events

to correlating them into actionable incidents, PagerDuty provides insights so you can intelligently respond to

critical disruptions for exceptional customer experience. With hundreds of native integrations with monitoring and

collaboration tools, automated scheduling, advanced reporting, and guaranteed reliability, PagerDuty is trusted by

thousands of organizations globally to increase business and employee efficiency.

We are proud to be the first vendor that introduced the tools and APIs that developers need to optimize their

environments for on-call success. From 2009 to today, we’ve supported hundreds of thousands of developers on

our platform. Developers on PagerDuty can leverage a single platform for event normalization, customizable event

management at scale, numerous and well-documented API endpoints, ChatOps extensibility and collaboration

workflows, response automation, and more.

You code it? You own it. You need PagerDuty.

Learn more about PagerDuty for developers or start a free trial.

Ultimately, operating services
and being on-call is essential
for you to deliver real value by
driving customer outcomes.

It is a fundamental best practice for shipping better and more

performant code and will inevitably help you grow your career.

As you take on more responsibility on your personal journey

towards becoming a better developer, implementing these best

practices will help you reduce the on-call pain that exists as a

result of unplanned or redundant work. By delivering stress-

tested and resilient code, proactively preventing repetitive

issues, and silencing non-actionable alerts; you will spend less

time fixing issues while on-call and more time being productive

and creative. And when issues do arise, you will be prepared

to resolve them as quickly as possible by easily surfacing

remediation details and consolidating related context,

automating manual processes, and customizing workflows that

enable you to work how you like, with the tools you like.

Being on-call should be a huge source of empowerment, not

stress. By making on-call seamless through implementing

these best practices will position you to do the most impactful

work of your career that directly drives the success of your

customers and your organization.

https://www.pagerduty.com/free-trial/?utm_source=pagerduty&utm_medium=content&utm_campaign=ebook_own_your_code&utm_content=developer-ebook
https://www.pagerduty.com/why-pagerduty/developers/?utm_source=pagerduty&utm_medium=content&utm_campaign=ebook_own_your_code&utm_content=developer-ebook
https://www.pagerduty.com/free-trial/?utm_source=pagerduty&utm_medium=content&utm_campaign=ebook_own_your_code&utm_content=developer-ebook
https://www.facebook.com/PagerDuty/
https://twitter.com/pagerduty
https://www.linkedin.com/company/pagerduty
mailto:support%40pagerduty.com?subject=

	Own Your Code
	How the Developer’s
Role Is Changing
	9 Steps to Successfully Owning Your Code
	Understand your services and your customers’ experiences.
	Find out about problems before your customers notice.
	Ensure you are only woken up for customer-impacting issues.
	Assess the impact as quickly as possible.
	Recruit the right
people quickly.
	Prevent recurring issues.
	Work your way.
	Build more resilient services.
	Don’t waste your time. Automate.

