
Automation
for Incident
Remediation

 Introduction
Automation has become a key competency for modern IT teams. The proliferation of platforms, tools, and contexts for
developing, testing, and running applications creates a near infinite number of toolset combinations. Each tool requires
expertise to use well, and that knowledge needs to be preserved, evaluated, and learned from over time. This process is
difficult if all the processes are manual. While teams have become comfortable with the automation of certain steps in
their workflows (like building software or performing some testing), teams are often slow to apply much automation to the
operational part of the software delivery lifecycle.

Manual processes combined with complex operational environments have a number of negative potential
consequences for technical teams:

•	 Fast-moving Agile development practices outpace documentation
•	 Mistakes are easy to make in manual processes
•	 Manual toil contributes to burnout and employee disengagement

Automating manual processes helps teams avoid these drawbacks, helping mitigate the risk, cost, and negative team
health impacts of this type of work.

The negative impacts of manual processes follow applications into production environments and have outsized impact
when something goes wrong. Incorrect documentation, copy-and-paste errors in manual processes, and repeated
steps create risk when all systems are running as expected, but can have catastrophic impacts during an incident.
Applying automation to incident response contributes to the overall consistency, predictability, and reliability of the
response process.

If your team is not yet applying automation to your incident response processes, we hope this guide will help you think
about and experiment with automating for incident response.

Automation and Its Use
Cases in IT
With the spread of DevOps as a framework for overhauling
IT workloads, as well as the increasing popularity of public
clouds, automation of various work has become key to
successful digital transformation. Cloud platforms offer
opportunities for flexibility and developer autonomy,
along with complexity, scale, and speed that is difficult
to maintain with manual processes. As more and more
technology teams find themselves at the intersection of
traditional manual practices and modern API-driven
practices, it is necessary to not only build the skills needed
for automation, but also to embrace the mindset that
automation is a benefit to the overall health of the systems.

Automation for IT processes has many of the same goals
as automation in any other industry. We strive to deliver
consistent, reliable results, no matter who the practitioner
is, or which machine or service is involved. Automating
repetitive, low-value tasks reduces toil and allows people
to perform higher-value, more rewarding work.

Many teams will find that a variety of tools will help them
alleviate the issues related to incorrect documentation,
mistakes, and toil that plague teams using manual
processes. As systems have increased in number and
complexity, the need for automation has also increased.
Safe, reliable automation gives IT teams a place to abstract
their processes so they don’t have to be memorized or
exposed to the risk of manual work. Manual workflows like
cutting-and-pasting carry heavy risks for mistakes; outdated
documentation can slow down task completion or cause
errors on its own; and the toil of repetitive manual tasks has
negative impacts on employee productivity, satisfaction,
and engagement.

Automation can be applied to many facets of a technical
project, from building and testing software, to creating the
runtime environments, to responding to error conditions and
incidents. Various stages of the software development lifecycle
include tasks that are candidates for automation, as well as
tasks that are done repeatedly that require little or no input
from humans, and have consistent end states. Creating and
maintaining automation, whether in the form of scripts or libraries
or other components, comes with a cost, so we want to find the
tasks that will have the most impact on team resources when
they are performed by the automation.

When we perform tasks or otherwise make changes to any part
of a system, there are some goals we should keep in mind. In
Architecting for Scale, Lee Atchison has categorized these goals
as the following:

• The procedure should be testable
• The procedure should be flexible and implemented for future

improvements
• The procedure should be reviewable by someone else as a

check
• The procedure should be put under version control
• The procedure should be applicable to related resources,

and “one-off” changes should be discouraged, and it
should be applied to all related resources in the same way

• The procedure should be repeatable and auditable

While we can potentially satisfy these goals with manual
processes, automation codifies the tasks into repeatable
processes and ensures they are performed the same way
each time they are needed.

If we keep these goals in mind when we are thinking about
every change that will be made to our systems, we establish
practices that prioritize reliability of our systems in all phases of
the lifecycle, including when we are responding to incidents.
Let’s look at some ways your team is already using automation.

Build and Deploy
Building and packaging software applications is inherently a
form of automation. Different types of languages and runtimes
have different requirements, but the tasks are well defined
and repetitive. Whether an application requires compilation
and linking, or the organizing of external dependencies, the
developer can employ automation to perform these tasks
reliably. Application build can be run as part of a pipeline of
processes, where the entire workflow is created and stored
for repeated use, ensuring that steps aren’t forgotten or run
incorrectly.

For technical and organizational reasons, automated
deployments are not as ubiquitous as automated builds,
for technical and organizational reasons. For example:

• Organizations utilizing rigid change management programs
are reluctant to authorize automated deployments of new
builds to production, though they may deploy into shared
development environments or a staging environment for
testing and integration purposes.

• Even in loosely coupled environments, services may
have some dependency on changes to data schemas
that require more manual intervention, such as a full
backup to be taken before the update.

• Automated deployment often comes at the end of a long
modernization journey, after teams have successfully
changed a number of other development practices,
including preferring small, incremental changes and
employing methods like feature flagging and dark launching.

Automated build and deployment are often combined into a
set of practices known as Continuous Integration/ Continuous
Deployment or CI/CD. The challenges presented by automated
deployments have expanded the definition of CI/CD to also be
defined as Continuous Delivery. Delivery places the software
in a repository for later use, while deployment installs the
software into a specific environment. Tools that perform CI/CD
tasks help teams create pipelines or workflows to build, test,
package, and deploy or deliver software.

Automated deployment isn’t possible for all software. Software
that wasn’t designed for automated installs or upgrades might
require the acceptance of a license agreement with no option
to pre-populate metadata, settings file, or registry entry. It might
still require the installer to make selections manually without
the aid of a pre-populated inventory or other aid. These installs
fail the goals of repeatability and are incredibly difficult to
reproduce effectively, making them harder to repair or rebuild
when needed.

Test
Automated testing is a topic all its own. It’s beyond our scope
here, but it’s part of the application lifecycle so we’ve included
it for completeness.

Various programming languages and frameworks have specific
testing paradigms and tooling, but overall, manual testing is a
tedious process. With the increasing complexity and volume
of software components used in many organizations, manual
testing is simply no longer possible or time efficient.

Automated testing can start from the first time a developer
saves a file in their text editor, when the editor itself initiates
a syntax checker or linter. As a change proceeds through the
build process, more tests can be performed, from unit tests
to integration tests, depending on the features or services
impacted by the change. There’s no chance that a test step
will be forgotten if they are all automated.

Provisioning
The building and maintenance of environments on full
systems, virtualized systems, and containers is another
area that has been highly automated. For new projects,
no one will ever put a warm coat on, walk into a highly
air-conditioned data center, roll a “crash cart” with keyboard
and mouse up to a rack of servers, and install the OS on
them from a CD or DVD, clicking through options and
package selections manually, like we did 10 or 15 years ago.

Building infrastructure is susceptible to the challenges we
outlined in the introduction. Documentation of the process
will rapidly become out of date, mistakes are easy to
make, and the repeated tasks required to build out a large
environment are tiresome. Automation for the base layers
beneath your applications is key to maintaining large-scale
production environments, but it is also important for the
maintenance of smaller environments. Automating the
provisioning of infrastructure ensures that:

• All the like systems in the environment are identical, even if
they aren’t built at the same time

• All the systems in the environment will have all the
components required in the correct versions

• The systems can be rebuilt to the correct specifications in
case of disaster or catastrophic loss

When services run in cloud or Infrastructure as a Service
environments, the APIs provided by the vendor also give
teams a strong starting point for automated management
of services and systems. Tools like HashiCorp’s Terraform,
combined with configuration management tools like Chef,
Puppet, or Ansible, provide an automated path from first
provisioning through preparation for services to actively
managing and maintaining services. This path for making
planned changes is fairly well understood, and also has
a set of testing tools like Test Kitchen and ansible-test to
help achieve our goals for testing changes before they are
applied to our environments.

Automation for Incident
Remediation
Responding to incidents and alerts presents opportunities
for automation in some environments as well. While we
find automation in the creation steps of technical products,
it is less common in the longer term maintenance of the
systems. Automation improves the health of our running
systems and can help us better manage the issues
that arise. When considering automation for incident
remediation, keep in mind that in complex systems,
failure is inevitable. Our automation goals at this stage
aren’t to prevent failures, but to swiftly deal with failure
when it happens and optimize for it as much as possible.

Creating monitoring and health-checks for production
systems is fairly ubiquitous since organizations that don’t
count IT as a customer product space still heavily rely on
IT services to be functional and performative. As long as
all services are up and running, everything is fine. When
something goes wrong, what happens next could be
chaos or it could be a well-managed practice of contacting
responders and remediating issues. Automation can be
employed from the first blip or hiccup, including how the
correct team is contacted, how they are able to respond,
and whether there is additional infrastructure to support
troubleshooting and remediation. More efficiency and the
intentional use of automation in even these early phases of
remediation reduce the time it takes to acknowledge and
repair issues that arise.

Making changes safely is particularly important when a team
is attempting to fix an incident, but unplanned changes made
during troubleshooting are often made manually. When a
service is unavailable or not performing in some way, making
a mistake because of a manual process can delay the
resolution. It could even make matters worse. If an incident
responder makes a copy-and-paste error, or skips a step in
a runbook, or executes a command in the incorrect terminal,
any number of unpredictable things could happen. So we
look to employ automation in our remediation processes.

We want automated remediation for many of the same reasons
we want automation in general—as systems increase in
number and complexity, the amount of information needed to
run and maintain them effectively also increases. The decision
to auto-remediate alarms from certain inputs might consist of
several points:

• How often the alarm triggers. We reduce the noisiest alarms
for the greatest gain.

• How often the alarm is non-impacting to end users at first
instance. Early warnings like disk usage can be dealt with by
automation.

• If the first step in a manual remediation is always the same
for the alarm. If a human typically restarts a service to see if
that fixed the issue, the automation should do that step.

Teams may find that their alarms have a consistent set of
solutions that can be automated. Creating this automation, via
any number of tools, removes these alerts from the immediate
attention of the team, and lessens the potential for what we
refer to as “alert fatigue.”

Alert fatigue occurs in a number of industries where workers
are exposed to alerts and alarms on a regular basis to the
point where the alerts lose meaning. Large numbers of
alarms, or alarms with high frequency, can cause responders
to become desensitized over time. As responders become
desensitized, their response times become longer and the
potential for mistakes increases when there is an important
alarm. We see this in IT when a preponderance of low-urgency
alerts are passed to responders in real time, 24 hours a day,
instead of being added to a work queue, delayed to working
hours, or otherwise managed.

IT teams can deploy automation to combat the contributing
factors to alert fatigue. While a dashboard may seem like
a good idea since it will help eliminate the cacophony of
beeps, chimes, chirps, and buzzes from alerts, a screen
full of red status reports or flashing issues can be difficult
to make use of in a timely manner. If using a dashboard,
teams that categorize their alarms by severity and urgency
can also categorize them as targets for future automation.
When everything else has been mitigated by automated
processes, the team will have more capacity to deal with
the alerts that do need human attention.

We also want to use automation when the solution should
be faster than a human could be expected to perform
the actions. This might include production activities
like autoscaling when a service is under heavy load or
prohibiting IP addresses that are repeatedly attempting a
bad request. Depending on your use of IaaS platforms,
you might already be making use of some of these
functions that are built into the service.

Machines are faster than humans at some tasks, and they
don’t mind work that is boring and repetitive. As we build
automation, we focus on the tasks with the most toil; i.e.,
those that require humans to do a lot of work, but work
that is relatively low value. Those are the tasks that can be
completed by automated processes. Automation will help a
team respond to incidents in a predictable and defined way.

Your team may already be using documentation or guides
like runbooks that prescribe the steps to take to remediate
an issue. Where those runbooks can be performed by
automation, fewer distractions and alerts will go to the
human responders. Particularly for remediation tasks that are
low value, like restarting services or clearing disk space, this
work is better allocated to automation. The automation can
then also be applied to multiple sets of similar systems.

Our automation should be reliable and consistent, so as we build out our automation, we’ll also want to keep these
goals in mind:

• The procedure should be testable
• The procedure should be flexible and implemented for future improvements
• The procedure should be reviewable by someone else as a check
• The procedure should be put under version control
• The procedure should be applicable to related resources, and “one-off” changes should be discouraged,

and it should be applied to all related resources in the same way
• The procedure should be repeatable and auditable

Start By Reducing Noise
Before even thinking about automating processes, take a long, hard look at the alerts being generated by your systems.

• Are there unactionable alerts?
• Are there alerts that are overly complex?
• Are there alerts that should be fixed in engineering?

Round 1 of automating incident response is to ensure the alerts that are coming through are useful and can be fixed
in the production environment. You can find more guidance on creating useful alerts in our Ops Guide on Incident
Response. Good alerts will contain an appropriate amount of useful information about the impacted system. They’ll be
rated in line with their impact on users. And they’ll be something that can be remediated in production under normal
conditions. If your systems generate alerts that can’t be fixed via changes to the production environment, send them
back to engineering. For example, when moving to a distributed services model in a cloud, you might see a need to
increase the timeouts for requests to remote services. This is an expected performance tradeoff for the architectural
change, and the timeout for those types of requests often needs to be increased.

Getting Started With
Automated Remediation
We can take a multistage approach for implementing automated remediation in our production systems:

Automation
Opportunities

Human
Initiated

Automation

Automation
with

Oversight

Automation
with

Fallback
Monitor &
Evaluate

Identify Initial Automation Candidates
Once you have the alerts cleaned up, take a look at the data you have on the number of alerts that fire, when they occur,
and what their impacts are. This will give you candidates that will have the most impact on your responders when you
create automated remediation. Create a list of potential alerts that can be automatically remediated based on their
volume or simplicity. Potential candidates for your first round of automation might be alerts for single subsystem issues,
like disk space warnings, or alerts that already have a manual runbook that can be automated.

The Automate, Observe, Refine Cycle
Your first automated remediation targets should be well defined and well contained. Part of building up trust in your
automation tools will come from creating cumulative successes, so start with a small collection of alerts to automate.
Keeping the first set all within a single team of responders will help with training and communication.

Use your data set to determine the performance of your automation efforts. Is the team seeing a reduction in alerts? Are
incidents still getting resolved in a timely and correct manner? Has there been any negative impact to the customer?
Have you reduced the amount of toil the team is required to do on a daily basis to support the services?

You might want your team to implement automation in phases, allowing the automation to run but still alerting a human
responder as a check. Even before that, you can build trust in the automation by alerting a team member and having that
person initiate the automation process. Over time, this ensures that the automation runs as expected, but also gives the
team background knowledge of what the automation is intended to do. Working with unfamiliar automation can have
negative impacts for responder teams who aren’t sure what behaviors might have triggered the automation and what side
effects are of the automation itself.

Some teams might also want a place for the automation to report a status for later tracking and trend determination. For
example, your automation might be clearing unused files out of a cache directory to clear disk space, but if this starts
happening more and more often, your team will want to engage and find the underlying cause. The automation can only
do so much.

This is a good point to report your efforts to other teams to highlight what you’ve learned about the process and how the
automation is making the operation of systems and services better.

Maintaining Automation
The addition of an automation component to your production incident response will require tracking for updates when
the services they work on are updated. Downstream activities might be impacted by changes to things like service
names or command options. Remediation automation components, if they meet the goals mentioned above, will be
testable and checked into version control. They travel the software development lifecycle with the services that they
support, either in their own repository or in the project repository. Make sure you have a plan for how they are updated,
tested, and released when new versions of your services are deployed.

Challenges of Automation
Automation has quite a history, starting in the early days of
the Industrial Revolution. When weavers and textile workers
were faced with the realities of new machinery, they worried
that their hard-won skills and craftsmanship would no longer
be needed, and some banded together to destroy machines.
We still use their name, Luddites, to refer to people who are
reluctant to use or are hesitant around technology. For more
than 200 years, processes and human work have become
increasingly automated in many industries, from electrical
power generating, to aerospace, to shipping, to IT.

Making use of automation creates its own set of challenges.
Researchers in human behavior, human-computer interaction,
neuropsychology and other intersecting fields have been
looking at the effects of automation on workers for decades.

While not all the findings in these areas are applicable to IT,
there are a few that we might find interesting; in particular,
a set of “ironies” presented by Lisanne Bainbridge in a 1983
paper entitled Ironies of Automation. This paper is short, only
a few pages, but it has had a significant impact on the field of
automation research. Automation research often focuses on
industries in which failures create spectacular or catastrophic
results, such as aviation, power generation, or healthcare. The
downstream learnings can help us work with the automation
in our systems as well.

The Ironies, as presented by Bainbridge, focus on the impact
automation has on the behavior and readiness of human
operators. Two in particular are related to how the operator
feels about their engagement with their work. In a heavily
automated system, a human operator may not feel ownership
of the performance of the system. Their detachment from
many of the activities the system performs also contributes
to a question of the value of their work. An operator watching
automated processes for feedback can find that work
incredibly boring, but the level of responsibility on that
operator if they are needed by an anomalous situation creates
an odd dichotomy. This also contributes to a problematic
balance between boredom and vigilance that is still being
studied, especially in the field of autonomous vehicles.

One place that might impact your team’s overall
|performance after deploying automation at scale is the
potential degradation of skill of the operator. Bainbridge
discusses this a bit, but a follow-up paper by Barry Strauch
in 2017, Ironies of Automation, Still Unresolved After All
These Years, investigates in more depth, especially in
relation to aviation. Operators stepping into an incident
in the middle of some automated action may not have
the knowledge required to solve the problem or may not
have a full accounting of what the automation has already
done. In the worst cases, the operators may have never had
sufficient training to repair a system that has had some kind
of automation failure because they trained only with the
automation in place.

When we look to apply this foundational idea to IT
automation, we might find that operators become rusty
over time when they aren’t constantly exposed to the
system. We ask the folks responding to an incident to be
more knowledgeable about the system than they were
before the automation—they will only be stepping in when
the incident is more complex than the automation can take
care of. At PagerDuty, senior staff may be well prepared for
this kind of lifecycle, but it presents new challenges when
training junior staff.

Catastrophic failures attributed to automation, as they get
reported in the press, also make our automation tasks more
difficult from an organizational standpoint. When folks
express reluctance or trepidation around automation, it’s
often down to several common concerns:

• Fear of the automation creating a larger problem
• Fear of the automation just being wrong or doing nothing
• Fear of losing their job

Any unplanned work on a system might cause more errors
or have no positive effect on an alert, whether a human is
responding or the system has an automated response. While
no effect is better than increasing the scope of a problem, it
also delays the time to recover from the incident.

Part of keeping the automation “trustworthy” is maintaining
a narrow functional scope. This contains the potential blast
radius if anything does go wrong. The automation we build
should focus on one particular function and should report
back if something doesn’t work as expected.

Think about our earlier example of installing a software
package. There are a couple of checks we’d want to employ
inside the automation, such as not continuing if the package
can’t be accessed. We also want to keep the focus narrow;
the installation of the package doesn’t necessarily mean we
also want the service started immediately on all platforms,
so we might leave that out of the automation component.
Similarly for tasks like clearing disk space. Our human
responders might first log into the system and double
check that the “usual” culprit is responsible for the issue
before taking any action. Our automation should also run
these commands and act accordingly.

Job loss or recategorization is a real issue in organizations
applying automation to many parts of their workflow. As with
increased automation in many industries, the types of jobs
that are available will change. If your team chooses to use
more cloud-based infrastructure via automation and APIs,
you’ll have less need for someone on your team to spend
their day performing tasks like imaging machines or building
virtual hosts. These are repetitive tasks more [aptly] performed
by automation; we want to save the human time for solving
problems. So part of your automation journey will likely require
you to spend some time and attention on helping some of
your staff retrain and learn new tasks.

It’s unlikely, as you automate, that you’ll have less work to do.
Once organizations start reaping the benefits of faster time to
market and higher quality output, their ability to innovate also
increases. More innovation creates more projects for your
technical teams to work on as well.

About PagerDuty

PagerDuty is a leader in digital operations management. In an always-on world, organizations of all sizes trust PagerDuty to help them deliver a perfect digital
experience to their customers, every time. Teams use PagerDuty to identify issues and opportunities in real time and bring together the right people to fix problems
faster and prevent them in the future. To learn more and try PagerDuty for free, visit www.pagerduty.com

2020 PagerDuty® // All Rights Reserved.

Allspaw, John. Taking Human Performance Seriously in Software. Monitorama Conference, 2019.
https://vimeo.com/341144396

Bainbridge, Lisanne. “Ironies of Automation”. Automatica, Vol. 19 No. 6 pp 775-779, 1983. International Federation of Automated
Control.

Forsgren, Nicole, PhD. Gene Kim. Jez Humble. Accelerate: The Science of Lean Software and DevOps: Building and Scaling
High Performing Technology Organizations. Portland: IT Revolution Press, 2018.

Gene Kim, Jez Humble, Patrick Debois, John Willis. The DevOps Handbook. Portland: IT Revolution Press, 2016.

Perrow, Charles. Normal Accidents: Living with High-Risk Technologies. Princeton, NJ, Princeton University Press, 1999.

Strauch, Barry. “Ironies of Automation: Still Unresolved After All These Years”. IEEE Transactions on Human-Machine Systems.
August 2017. Pp 1-15.

References and Further Reading

Deploying automation helps your team reduce toil and creates space for innovation that would otherwise be used to respond
to unplanned work.

Our automation needs to fit snugly into the application lifecycle; in some cases it might be completely bespoke, in other
cases it might be something off the shelf. But it should be treated in the same way we treat the development of the application,
undergoing testing and employing good practices. When we approach the operational life of our applications as part of the
features of the applications, creating and maintaining automation components becomes part of the application development
process itself.

Conclusion

